Exploring the Impact of Rule Algorithms on Designers' Cognitive Behaviour in a Parametric Design Environment

By

Rongrong Yu

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Architecture)

May, 2014

School of Architecture and Built Environment Faculty of Engineering and Built Environment The University of Newcastle Callaghan, 2308, Australia This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

(Rongrong Yu)

Acknowledgements

At this moment, I have to say that a PhD is such a wonderful journey. Four years ago when I started, I thought it was just about the completion of one particular research study. At this very end of my thesis, I realise that it is far more than that. From all the ups and downs, all the struggling, what I have obtained is a new way of thinking, of reasoning and solving problems, and most importantly, a positive attitude when facing difficulties. On my way, I also gained lots of precious friendships, and lots of generous help from many people. This thesis could not be possible without the support and encouragement from my supervisors, colleagues, friends and family.

First and foremost, I would like to express my greatest gratitude to my principal supervisor Dr. Ning Gu. He led me to enter the field and supported me all these years to reach the completion of my PhD. His insightful guidance, strong belief and positive attitude helped me to go through those "dark" days. I wouldn't have arrived where I am without him. I would also thank my co-supervisor Prof. Michael Ostwald for his kind support and encouragement during my study. He is always ready to help whenever I am in need: his impressive wisdom and passion in research has inspired me all the time.

I would like to particularly thank Prof. John Gero, for his great contribution to this study. He served as my external supervisor in the past two years. He was always very patient and generous to offer advice. His valuable suggestions and criticism were of great help in the development of my research.

I would like to grateful acknowledge the China Scholar Council (CSC) for providing the financial support for my PhD study. And also thanks to the University of Newcastle for providing me with the opportunity to study here. The Faculty of Engineering and Built Environment greatly assisted me with the Postgraduate Research Support Scheme.

I wish to extend my appreciation to all the staff and research students in the School of Architecture and Built Environment. Thanks for their support and company to make my stay such a pleasant experience. Especially thanks to Dr. Ju Hyun Lee, who provided lots of valuable suggestions for my research. Whenever I encountered difficulties, he was always there for me. My appreciation will also go to all the participants involved in my experiment for their kindness in dedicating their time to this study. I also wish to express my appreciation to all the academics I met in the conferences, who have provided valuable suggestions for my research.

Finally, I give my deepest gratitude to my parents and my husband. I am so grateful for everything they have done for me: thanks for all your love and sacrifice. I couldn't get here without your support and company all these years.

Abstract

Parametric design has been increasingly applied in the architectural industry in recent years. Researchers have studied the designers' behaviour in parametric design environments using various methods. However, there is a lack of empirical evidence to support the understanding of how parametric design affects designers' ways of thinking.

This research aims to explore the impact of the rule algorithm feature in parametric design environments on designers' behaviour. To achieve this, a protocol study was conducted comparing designers' cognitive behaviour in a parametric design environment (PDE) with their cognitive behaviour in a traditional geometric modelling environment (GME). Eight professional architects participated in the experiment in which each of them was required to complete two design sessions with design tasks at similar complexity level, one in each environment. A "think aloud" method was used to collect data during the design experiment. By employing protocol analysis, the collected data were coded and analysed using the function-behaviour-structure (FBS) ontology.

From a comparison of the protocol analysis results of designers' behaviour in the PDE and the GME, there are limited differences found between the two. From these results, we can infer that designers' high level thinking does not vary significantly in response to the tools they use. That is, whatever environment they are in, their design thinking shares some commonalities in how they approach design. However, in terms of the impact of rule algorithm use in the PDE three major differences have been revealed by this study as follows.

First, designers express an exchange of cognitive behaviour between the two levels of activities – design knowledge level and rule algorithm level. The results indicate that the design knowledge-related activities dominate the parametric design process for all cognitive issues. Therefore, we can infer that in the parametric design process, designers still expend most effort on design knowledge; parametric scripting is mainly used to support their intention of generating models.

Second, by calculating the transition probabilities between FBS design issues, we found the transition probability from F to S is much higher in the PDE. F to S is a typical design pattern which is derived from designers' existing knowledge/experience. That is, designers tend to use the existing design patterns more frequently in the PDE. Three types of design patterns in the PDE have been identified and discussed.

Third, in parametric design environments, the design problem formulation is more tooloriented. Based on the division of two levels of design activities, and by calculating the frequency of transitions between the design problem and solution spaces, characteristics of problem-solution co-evolution processes in the PDE have been discussed. For example, the co-evolution process typically occurs at the individual design knowledge level or rule algorithm level, and only relatively infrequently do transitions occur across the two levels. The most representative activities of parametric design (activities on the rule-algorithm level) seems to play more important roles in design in the later stage of the design session. Based on these findings, a model which illustrates the main co-evolution process in the PDE has been proposed.

Results of this research enhance our understanding of parametric design: although parametric design tools have many advantages related to its rule algorithm feature, such as flexibility, and efficiency, architectural design knowledge is still essential for defining/formulating the design problem. The design patterns identified from this cognitive study could be deliverable to students, which could possibly assist in learning parametric design more efficiently and systematically. Results of this study also imply that the way in which designers use parametric design processes. The proposed research outcome will be beneficial for design educators, designers, design researchers, and also software developers.

Table of Contents

Acknowledgements	3
Abstract	4
Table of Contents	6
Chapter 1: Introduction 1	0
1.1 MOTIVATION1	0
1.2 AIM AND OBJECTIVES1	1
1.2.1 Research Aim1	1
1.2.2 Research Objectives1	2
1.3 RESEARCH SCOPE AND LIMITATIONS1	3
Chapter 2: Literature review I – parametric design 1	6
2.1 DEFINITION OF IMPORTANT CONCEPTS1	6
2.1.1 Parametric design1	6
2.1.2 Parametric modelling1	7
2.1.3 Parametric variations1	7
2.2. PARAMETRIC DESIGN PRACTICE IN ARCHITECTURE	8
2.2.1 Brief history of parametric design1	8
2.2.2 Parametric design tools	0
2.2.3 Limitations of parametric design practice in architecture	,1
2.3 LATEST TRENDS IN PARAMETRIC DESIGN RESEARCH2	2
2.3.1 Parametric design and form-finding2	2
2.3.2 Parametric design and building performance	4
2.3.3 Collaboration in parametric design	.5
2.4 PARAMETRIC DESIGN THINKING2	.6
2.4.1 Changes of designers' activities in a PDE2	.6
2.4.2 Characteristics of parametric design thinking	.7
2.5 PARAMETRIC DESIGN ENVIRONMENTS AS TWO OVERLAPPING CONCEPTUAL DESIGN SPACES2	
Chapter 3: Literature review II – protocol studies on designers' cognitive behaviour	0
3.1 OVERVIEW OF PROTOCOL ANALYSIS	0
3.1.1 Protocol analysis as a research method for design cognition	0
3.1.2 Procedure of applying protocol analysis	1
3.2 DESIGN PROTOCOL STUDIES	1
3.3 OVERVIEW OF CODING SCHEMES APPLIED IN PROTOCOL STUDIES	3
3.3.1 Protocol studies using Suwa's coding scheme	4
3.3.2 Protocol studies using the FBS coding scheme	5
3.3.3 Discussion about existing coding schemes	5
3.4 FUNCTION-BEHAVIOUR-STRUCTURE (FBS) ONTOLOGY	6

3.4.1 Studies into the design process in design thinking	36
3.4.2 FBS ontology	37
Chapter 4: Research methodology and research design	38
4.1 JUSTIFICATION OF PROTOCOL ANALYSIS	38
4.2 EXPERIMENT SETTING	39
4.2.1 Selection of subjects	39
4.2.2 Design environments: PDEs VS. GMEs	40
4.2.3 Design brief	41
4.2.4 Experiment procedures	42
4.3 CODING SCHEME DEVELOPMENT BASED ON FBS ONTOLOGY	43
4.3.1 Justification of FBS ontology for coding scheme development	43
4.3.2 Development of a coding scheme to study designing in PDEs	43
4.3.3 Interpretation of FBS coding in the rule algorithm space	44
4.4 A PILOT STUDY	46
4.4.1 Summary and result of the pilot study	46
4.4.2 Considerations based on the pilot study results	49
Chapter 5: General results	51
5.1 GENERAL OBSERVATIONS FROM THE EXPERIMENT	51
5.2 GENERAL RESULTS OF THE CODING	52
5.2.1 Reliability of coding	52
5.2.2 Descriptive statistics of design issues	54
5.2.3 Descriptive statistics of syntactic design processes	56
5.2.4 Qualitative description of individual design processes	57
5.3 COMPARISON OF DESIGN ISSUES DISTRIBUTION	63
5.3.1 The overall distribution of design issues	63
5.3.2 Impact of rule algorithm in the PDE	64
5.3.3 Design issues distribution across different design stages	65
5.4 COMPARISON OF THE DISTRIBUTION OF SYNTACTIC DESIGN PROCESSI	ES73
5.4.1 The overall distribution of syntactic design processes	73
5.4.2 Syntactic design processes across different design stages	74
5.5 STRUCTURE OF DATA ANALYSIS	78
Chapter 6: Analysis I – Cumulative analysis during parametric design	81
6.1 ANALYSIS METHOD: CUMULATIVE OCCURRENCE OF DESIGN ISSUES	81
6.2 CUMULATIVE ANALYSIS COMPARING THE GME AND THE PDE	82
6.2.1 Cumulative analysis of design issues in the GME and the PDE	82
6.2.2 Commonalities of the cumulative analysis	89
6.3 IMPACT OF RULE ALGORITHMS IN THE PDE THROUGH CUMULA ANALYSIS	
	חחח

6.3.1 Cumulative analysis of design issues at two levels of design activities in the PDE

6.3.2 Relative effort on the two levels of design activities in the PDE	98
Chapter 7: Analysis II – Markov model analysis of parametric design	102
7.1 ANALYSIS METHOD: MARKOV MODEL	102
7.2 MARKOV MODEL ANALYSIS COMPARING THE GME AND THE PDE	103
7.2.1 1 st order Markov model analysis in the GME and the PDE	103
7.2.2 1 st order Markov model analysis across different design stages	105
7.3 DESIGN PATTERNS	107
7.3.1 Design patterns exhibited in the parametric design process	107
7.3.2 Three types of design patterns in the PDE	108
7.3.3 Design patterns across different design stages	111
Chapter 8: Analysis III - Co-evolution of problem and solution spaces in parameter	
8.1 DESIGN PROBLEM AND SOLUTION SPACES	
8.1.1 Problem/solution driven design	114
8.1.2 Co-evolution of design problem and solution	114
8.2 PROBLEM/ SOLUTION DRIVEN DESIGN IN THE GME AND THE PDE	117
8.2.1 Problem/Solution division using FBS ontology	117
8.2.2 Problem-solution index in the PDE and the GME	117
8.3 CO-EVOLUTION OF PROBLEM AND SOLUTION SPACES IN THE GME A PDE	
8.3.1 Discontinuity ratio in GME and PDE	118
8.3.2 Comparing the co-evolution process in the GME and the PDE	
8.4 THE IMPACT OF RULE ALGORITHMS ON THE CO- EVOLUTION PROTIED THE PDE	
8.4.1 Transition patterns between the design problem and solution spaces in the	e PDE 122
8.4.2 Transition patterns across the whole design session	124
8.4.3 A model of the co-evolution process in the PDE	
Chapter 9: Discussion and conclusion	129
9.1 MAIN FINDINGS	129
9.1.1 Commonalities in digital design	129
9.1.2 Impact of rule algorithms on designers' behaviour	131
9.1.3 Summary	132
9.2 FURTHER IMPLICATIONS FOR DESIGN	133
9.2.1 Implications for design education and practice	133
9.2.2 Implications for parametric design software development	134
9.2.3 Implications for cognitive design research	135
9.3 FUTURE STUDY	135
References	138

Appendix 1: Design brief	148
Appendix 2: Ethics approval	151
Appendix 3: Design outcomes	153
Appendix 4: Coding	155
Appendix 5: Publications arising from this research	279